Origin of the Newberry Hotspot Track: Evidence from shear-wave splitting
نویسندگان
چکیده
Located in the northwestern United States, the Newberry Hotspot Track consists of a sequence of age-progressive silicic volcanic domes and lava flows, showing a monotonic age progression from east to west ending at the Newberry Caldera. While mantle plumes are often called upon to explain hotspot tracks, the Newberry track cannot be the direct product of plate motion over a stationary mantle source as its orientation is ∼120° to plate motion, making it a good case study for alternative causal mechanisms of hotspot tracks. Four end-member tectonic models have been proposed: (1) subduction counterflow, (2) gravitational flow along the base of the lithosphere, (3) lithospheric faulting, and (4) extension of the Basin and Range. To get fabric information about the asthenosphere and constrain the possible flow fields beneath the Newberry track, SKS splitting measurements were made for 27 events at 12 stations of the Oregon Array for Teleseismic Study (OATS) along the track. A gradual rotation of the fast direction is observed from ENE–WSW at the northwest end of the array to E–W to the southeast and the delay times average 1.65s. We infer that the SKS splits are the product of anisotropy in the asthenosphere and the anisotropy orientation does not vary with depth beneath the track. The average fast directions ENE–WSW to the northwest are consistent with generation by mantle shear parallel to the subduction of the Juan de Fuca Plate, and the more E–W fast directions to the east are perhaps due to shear caused by the Basin and Range extension. Since the observed fast directions are not parallel to the Newberry track, as the subduction counterflow model or the gravitational flow model suggests, the age-progressive volcanism is unlikely a direct product of asthenospheric flow. Instead, we propose that the Newberry track is the product of lithosphere-controlled processes. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Beneath Yellowstone: Evaluating Plume and Nonplume Models Using Teleseismic Images of the Upper Mantle
The Yellowstone hotspot commonly is thought to result from a stationary mantle plume rooted in the lower mantle over which North America moves. Yet Yellowstone’s initiation and its association with the “backward” propagating Newberry hotspot across eastern Oregon pose difficult questions to those explaining Yellowstone as a simple consequence of a deep-seated plume. Teleseismic investigations a...
متن کاملAbsolute plate motions constrained by shear wave splitting orientations with implications for hot spot motions and mantle flow
[1] Here, I present a new absolute plate motion model of the Earth’s surface, determined from the alignment of present-day surface motions with 474 published shear wave (i.e., SKS) splitting orientations. When limited to oceanic islands and cratons, splitting orientations are assumed to reflect anisotropy in the asthenosphere caused by the differential motion between lithosphere and mesosphere....
متن کاملAsthenospheric channeling of the Icelandic upwelling: Evidence from seismic anisotropy
Two end-member geometries, radial flow and ridge-channeled flow, have been proposed for the dispersion of material upwelling beneath Iceland. Seismic anisotropy provides information on mantle flow, and therefore has the potential to discriminate these two geometries. In this study, we combine the HOTSPOT and SIL datasets (39 stations) and select 28 events for teleseismic shear-wave splitting an...
متن کاملEstimation of Plunge Value in Single- or Multi-Layered Anisotropic Media Using Analysis of Fast Polarization Direction of Shear Waves
Estimation of the fast polarization direction of shear seismic waves that deviate from horizontal axis is a valuable approach to investigate the characteristics of the lower crust and uppermost mantle structures. The lattice preferred orientation of crystals, which is generally parallel to the downward or upward flow of the mantle or crust, is an important reason for the occurrence of fast axis...
متن کاملThe non-commutivity of shear wave splitting operators at low frequencies and implications for anisotropy tomography
S U M M A R Y Measurements of the splitting or birefringence of seismic shear waves constitute a powerful and popular technique for characterizing azimuthal anisotropy in the upper mantle. The increasing availability of data sets from dense broad-band seismic arrays has driven interest in the development of techniques for the tomographic inversion of shear wave splitting data and in comparing s...
متن کامل